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Abstract. We perform large-scale numerical simulations of a directed version of the two-state
stochastic sandpile model. Numerical results show that this stochastic model defines a new
universality class with respect to the Abelian directed sandpile. The physical origin of the different
critical behaviour has to be ascribed to the presence of multiple topplings in the stochastic model.
These results provide new insight into the long-debated question of universality in Abelian and
stochastic sandpiles.

The class of sandpile models, consisting of the original Bak, Tang and Wiesenfeld (BTW) [1]
automata and its theme variations, is considered the prototypical example of a special class
of driven non-equilibrium systems exhibiting a behaviour dubbed self-organized criticality
(SOC). Under an external drive, these systems spontaneously evolve into a stationary state.
In the limit of infinitesimal driving the stationary state shows a singular response function
associated to an avalanche-like dynamics, indicative of a critical behaviour. Sandpile models
have thus attracted a great deal of interest, as plausible candidates to explain the avalanche
behaviour empirically observed in a large number of natural phenomena [2].

In recent years, the possibility of understanding the sandpile critical behaviour in analogy
with other non-equilibrium critical phenomena such as branching processes [3, 4], interface
depinning models [5,6], and absorbing phase transitions [7,8] has been pointed out. It is then
most important to identify precisely, for sandpiles, the universality classes and upper critical
dimensions, which are basic and discriminating features of the critical behaviour. Despite
significant numerical efforts, however, these issues remain largely unresolved. For instance,
it is still an unanswered problem whether or not the original deterministic BTW sandpile and
the stochastic Manna two-state model [9] belong to the same universality class. Theoretical
approaches [10–12] support the idea of a single universality class, while numerical simulations
provide contradictory results [13–15].

In order to have a deeper understanding of the universality classes puzzle, we turn our
attention todirected sandpile models[16]. In this case Dhar and Ramaswamy obtained an
exact solution for the Abelian directed sandpile (ADS) [16] which can be used as a benchmark
to check the numerical simulation analysis. Directed sandpiles thus become an interesting
test field to study how critical behaviour is affected by the introduction of stochastic elements.
Despite the fact that results obtained for directed models cannot be exported ‘tout court’ to the
isotropic ones, the eventual appearence of different universality classes provides interesting
clues on the general problem of universality in sandpiles. This issue has been recently addressed
in a particular case by Tadić and Dhar [17], but a general discussion of universality classes in
directed sandpile automata is still lacking.
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Figure 1. Toppling rules ind = 2 for directed sandpiles. Filled circles represent active (toppling)
sites; empty circles are stable sites. In the Abelian model (a) an active site sends one grain to each
one of its three neighbours on the next downwards row. In the stochastic models (b) one grain is
sent to two randomly chosen downward neighbours.

In this letter we present large-scale numerical simulations of the ADS and the stochastic
directed sandpile (SDS) models. First, we study an ADS model for which we recover
numerically the results expected from the analytical solution [16]. Then we introduce a
stochastic model which is a directed version of the Manna two-state sandpile [9]. In this
case, the set of critical exponents defines a different universality class. For both models we
provide a very accurate study of finite-size effects and the convergence to the asymptotic
behaviour. For small and medium lattice sizes we find scaling anomalies that are similar
to those encountered in isotropic models. We also study in detail the geometrical structure
of avalanches. The presence of multiple topplings appears to be the fundamental difference
between Abelian and stochastic models. Numerical simulations in Euclidean dimensiond > 2
show that both universality classes have an upper critical dimensiondc = 3, where strong
logarithmic corrections to scaling are present.

We consider the following definition for an ADS model (see figure 1(a)). On each site of
ad-dimensional hypercubic lattice of sizeL, we assign an integer variablezi , called ‘energy’.
At each time step, an energy grain is added to a randomly chosen site (zi → zi + 1). When a
site acquires an energy greater than or equal to the thresholdzc = 2d−1, it topples. Topplings
are directed along a fixed directionx‖ (defined usually as ‘downwards’): when a site on the
hyperplanex‖ topples, it sendsdeterministicallyone energy grain to each nearest and next-
nearest neighbour site on the hyperplanex‖ + 1, for a total of 2d − 1 grains. This definition
differs from the ADS studied by Dhar and Ramaswamy [16] in the orientation of the lattice.
Both models, however, share the same universality class, being Abelian, deterministic, and
directed.

The stochastic generalization of the above model is depicted in figure 1(b): the threshold
is nowzc = 2, independent of the spatial dimension. When a site at the hyperplanex‖ topples,
it sends two grains of energy to two sites, randomly chosen among its 2d − 1 neighbours in
the hyperplanex‖ + 1. The dynamical rule of this model can be definedexclusiveif the two
energy grains are always distributed on different sites. In contrast, anonexclusivedynamics
allows the transfer of two energy grains to the same site. We will consider separately the cases
of the exclusive stochastic directed sandpile (ESDS) and the nonexclusive stochastic directed
sandpile (NESDS). It is worth remarking that stochasticity does not alter the Abelian nature of
the model [18]. All three models are locally conservative; no energy grains are lost during a
toppling event. Boundary conditions are periodic in the transverse directions and open at the
bottom hyperplanex‖ = L, from which energy can leave the system.

In the critical stationary state, we can define the probability that the addition of a single
grain is followed by an avalanche of toppling events. Avalanches are then characterized by
the number of topplingss, and the durationt . According to the standard finite-size scaling
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(FSS) hypothesis, the probability distributions of these quantities are described by the scaling
functions

P(s) = s−τsG(s/sc) (1)

P(t) = t−τtF(t/tc) (2)

wheresc andtc are the cut-off characteristic size and time, respectively. In the critical state
the lattice sizeL is the only characteristic length present in the system. Approaching the
thermodynamic limit (L→∞), the characteristic avalanche size and time diverge assc ∼ LD
and tc ∼ Lz, respectively. The exponentD defines the fractal dimension of the avalanche
cluster andz is the usual dynamic critical exponent. The directed nature of the model introduces
a drastic simplification, since it imposesz = 1. A general result concerns the average avalanche
size〈s〉, that also scales linearly withL [16,19,20]: a new injected grain of energy has to travel,
on average, a distance of orderL before reaching the boundary. In the stationary state, on
average, each energy grain input will correspond to an energy grain flowing out of the system.
This implies that the average avalanche size corresponds to the number of topplings needed
for a grain to reach the boundary; i.e.〈s〉 ∼ L. The same result can be exactly obtained by
inspecting the conservation symmetry of the model [21].

For the ADS, the exact analytical solution ind = 2 yields the exponentsτs = 4
3, τt = 3

2

andD = 3
2 [16]. The upper critical dimension is found to bedc = 3, and it is also possible

to find exactly the logarithmic corrections to scaling [16, 22]. The introduction of stochastic
ingredients in the toppling dynamics of directed sandpiles has been studied only recently in
a model that randomly stores energy on each toppling [17]. This model is strictly related
to directed percolation and defines a universality classper se. In our case stochasticity
affects only the partition of energy during topplings, and there is no analytical insight for
the critical behaviour of this model. In order to discriminate between ADS and SDS we
perform simulations of both models for sizes ranging fromL = 100 toL = 6400. Statistical
distributions are obtained averaging over 107 avalanches. Comparison of numerical results on
the ADS allows us to check the reliability and degree of convergence with respect to the lattice
sizes used.

It is well known from the many numerical papers on sandpiles that an accurate
determination of the exponentsτs andτt is a subtle issue. An overall determination within 10%
accuracy is a relatively easy task. However, a truly accurate measurement, allowing a precise
discrimination of universality classes, is strongly affected by the lower and upper cut-offs in
the distribution. Extrapolations and local slope analysis are often very complicated and the
relative error bars are not clearly defined. In this respect, it is far better to calculate exponents by
methods that contain the system-size dependence explicitly; namely data collapse and moment
analysis. Moment analysis was introduced by De Menechet al [23] in the context of the two-
dimensional BTW, and it has been used extensively on Abelian and stochastic models [15,24].
Theq-moment of the avalanche size distribution on a lattice of sizeL, 〈sq〉L =

∫
sqP (s) ds,

has the following size dependence:

〈sq〉L = LD(q+1−τs )
∫
yq−τsG(y) dy ∼ LD(q+1−τs ) (3)

where we have used the transformationy = s/LD in the FSS from equation (1). More
generally,〈sq〉L ∼ Lσs(q), where the exponentsσs(q) can be obtained as the slope of the
log–log plot of 〈sq〉L versusL. Using equation (3), we obtain〈sq+1〉L/〈sq〉L ∼ LD or
σs(q + 1)−σs(q) = D, so that the slope ofσs(q) as a function ofq is the cut-off exponent; i.e.
D = ∂σs(q)/∂q. This is not true for smallq because the integral in equation (3) is dominated by
its lower cut-off. In particular, corrections to scaling are important forq 6 τs−1. An additional
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Table 1. Critical exponents for directed sandpiles ind = 2. DR: Dhar and Ramaswamy’s exact
result; ADS: Abelian model; ESDS, NESDS: stochastic models.

Model τs D τt z

DR 4
3

3
2

3
2 1

ADS 1.34± 0.01 1.51± 0.01 1.51± 0.02 1.00± 0.01
ESDS 1.43± 0.01 1.74± 0.01 1.71± 0.03 0.99± 0.01
NESDS 1.43± 0.01 1.75± 0.01 1.74± 0.04 0.99± 0.01

0 1 2 3
0
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2

3

4

ADS
ESDS
NESDS

Figure 2. Plot ofσs(q) for thed = 2 models ADS, ESDS and NESDS.

and strong check on the numerical data can be found in the fact that, as we have previously
shown, the first moment of the size distribution must scale linearly withL. This last constraint
also allows evaluation of the exponentτs from the scaling relation(2− τs)D = σs(1) = 1,
which should be satisfied for large enough sizes.

Along the same lines we can obtain the moments of the avalanche time distribution. In
this case〈tq〉L ∼ Lσt (q), with ∂σt (q)/∂q = z. Analogous considerations for smallq also
apply for the time moment analysis. Here, an estimate of the asymptotic convergence of the
numerical results is provided by the constraintz = 1, that holds for large enough sizes. Then,
theτt exponent can be found using the scaling relation(2− τt ) = σt (1).

Despite the fact that the moment method is usually rather accurate, it must be corroborated
by a data collapse analysis. The FSS of equations (1) and (2) has to be verified and must be
consistent with the numerical exponents obtained from the moment analysis. This can be
done by rescalings → s/LD andP(s) → P(s)LDτs and correspondinglyt → t/Lz and
P(t)→ P(t)Lzτt . Data for differentLmust then collapse onto the same universal curve if the
FSS hypothesis is satisfied. Complete consistency between the methods gives the best collapse
with the exponents obtained by the moments analysis. In table 1 we report the exponents found
for the ADS, ESDS and NESDS ind = 2. Figure 2 shows the momentsσs(q). Figures 3 and
4 plot the FSS data collapse for sizes and times, respectively.

The exponents obtained for the ADS are in perfect agreement with the expected analytical
results. This fact supports the idea that the system sizes used in the present work allow one
to recover the correct asymptotic behaviour. It is worth remarking that, for small and medium
lattice sizes, both moments and data collapse analysis present scaling features that cannot be
reconciled in the single scaling picture usually considered. These anomalies are not persistent
and disappear for reasonably large sizes (L ' 103). This evidence for a slow decaying of
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Figure 3. Data collapse analysis of the integrated avalanche size distribution for thed = 2 models:
(a) ADS and (b) ESDS. System sizes areL = 400, 800, 1600, 3200 and 6400. The results for the
ESDS and NESDS are identical, within error bars.
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Figure 4. Data collapse analysis of the integrated avalanche time distribution for thed = 2 models
(a) ADS and (b) ESDS. System sizes areL = 400, 800, 1600, 3200 and 6400. The results for the
ESDS and NESDS are identical, within error bars.

a) b)

Figure 5. Colour plots of the local density of topplings in two
avalanches of size 50 000, ind = 2, for (a) ADS and (b) ESDS. White
represents a single toppling per site; black stands for the maximum
number of topplings.

finite-size effects could shed light on several anomalies reported in isotropic sandpiles, for
which, unfortunately, it is very difficult to reach very large sizes [15, 23, 24]. Results for the
ESDS and NESDS are identical within the error bars, indicating that these two models are
in the same universality class. On the other hand, the obtained exponents show, beyond any
doubt, that Abelian and SDS models do not belong to the same universality class.

The compelling numerical evidence for two distinct universality classes does not tell us
what is the basic mechanism at the origin of the different critical behaviour. In order to have
a deeper insight into the dynamics of the various models, we have inspected the geometric
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Figure 6. Data collapse with logarithmic corrections of the avalanche time distribution for the
d = 3 models (a) ADS and (b) ESDS. The dashed lines have slope−2. System sizes areL = 64,
128, 256, 512 and 650.

structure of the resulting avalanches. In figure 5 we depict in a colour plot the local density
of topplings in two avalanches of size 50 000 corresponding to the two-dimensional ADS and
ESDS models. From the figure it becomes apparent that the stochastic dynamics introduces
multiple toppling events, which are by definition absent in the Abelian case. This gives rise to
very different avalanche structures, eventually reflected in the asymptotic critical behaviour.
In particular, the fractal dimensionD is indicative of the scaling of toppling events with sizes.
In the stochastic case we recover a higher fractal dimension than in the Abelian case. The
multiple toppling mechanism has been proposed in the past as the origin of differences between
isotropicAbelian and stochastic sandpiles as well. In that case, however, multiple toppling is
a common feature of both models, and for the largest sizes reached so far, they share the same
fractal dimensionD [15].

Analysis of the models in three dimensions is strongly hindered by the presence of
logarithmic corrections [16, 22]. Nonetheless, a naive application of the moment analysis
yields values compatible with the mean-field resultsτs = 3

2, τt = 2 andD = 2 [16].
More interestingly, in [16] the authors were able to deduce the exact form of the logarithmic
corrections ind = 3 for the avalanche time distribution, namelyP(t) ∼ t−2 ln t . In figure 6
we have checked that the same logarithmic corrections apply to both the Abelian and ESDS
sandpiles. This remarkable fact lends support to the critical dimension of the stochastic model
beingdc = 3.

In summary, we have reported large-scale numerical simulations of a SDS model. This
model defines unambigously a different universality class with respect to the ADS model.
The origin of this difference is traced back to the avalanche cluster geometric structure,
providing new clues to understand the effect of stochastic elements in the dynamics of avalanche
processes.

This work was supported by the European Network under contract No ERBFMRXCT980183.
We thank D Dhar, R Dickman, M A Mũnoz, A Stella, and S Zapperi for helpful comments
and discussions.
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